

633
 Review Question from Lecture 4

- Give an example of functions f and g such that $f(n)=\mathrm{O}(g(n))$ and $f(n)>g(n)$ for all $n \geq 1$.
(Answer: $f(n)=2 n ; g(n)=n)$

娽 Greedy Algorithm

－Earliest finish time：ascending order of f_{j} ．

Sort jobs by finish times so that $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$ ．	
if（job ${ }_{\text {j }}$ compatible with A）	
return A	

－Implementation．$\quad \mathbf{O}(n \log n)$ time； $\mathbf{O}(\mathrm{n})$ space．
－Remember job j^{*} that was added last to A ．
－Job jis compatible with A if $s_{j} \geq f_{j^{*}}$ ．
9／102007
S．Raskhodnikova；based on slides by K．Wayne．

653

Interval Partitioning Problem

－Lecture j starts at s_{j} and finishes at f_{j} ．
－Find：minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room
－E．g．： 10 lectures are scheduled in $\mathbf{4}$ classrooms．

63？弱弱
 Lower Bound

－Definition．The depth of a set of open intervals is the maximum number that contain any given time．
－Key observation．Number of classrooms needed \geq depth．
－E．g．：Depth of this schedule $=3 \Rightarrow$ this schedule is optimal．

－Q：Is it always sufficient to have number of classrooms $=$ depth？ و102007

[^0]
解
 Greedy Algorithm

－Consider lectures in increasing order of start time：assign lecture to any compatible classroom．

－Implementation． $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time； $\mathrm{O}(\mathrm{n})$ space．
－For each classroom，maintain the finish time of the last job added．
－Keep the classrooms in a priority queue．
я102007
S．Raskhodnikova；based on slides by K．Wayne

35
 弱摂
 Analysis：Structural Argument

－Observation．Greedy algorithm never schedules two incompatible lectures in the same classroom．
\bullet Theorem．Greedy algorithm is optimal．
－Proof：Let d＝number of classrooms allocated by greedy．
－Classroom d is opened because we needed to schedule a lecture，say j ，that is incompatible with all d－1 last lectures in other classrooms．
－These d lectures each end after s_{j} ．
－Since we sorted by start time，they start no later than s_{j} ．
－Thus，we have d lectures overlapping at time $s_{j}+\varepsilon$ ．
－Key observation \Rightarrow all schedules use \geq d classrooms．＂
9102007
S．Raskhodnikova；based on slides by K．Wayne．

[^0]: ．Raskhodnikova；based on slides by K．Wayne

